Monday 7 September 2015

802.15.4 – ZigBee


802.15.4 – ZigBee Physical Layer

ZigBee is a wireless technology developed as an open global standard to address the unique needs of low-cost, low-power wireless M2M networks. The ZigBee standard operates on the IEEE 802.15.4 physical radio specification and operates in unlicensed bands including 2.4 GHz, 900 MHz and 868 MHz.
The 802.15.4 specification upon which the ZigBee stack operates gained ratification by the Institute of Electrical and Electronics Engineers (IEEE) in 2003. The specification is a packet-based radio protocol intended for low-cost, battery-operated devices. The protocol allows devices to communicate in a variety of network topologies and can have battery life lasting several years.



The ZigBee Advantage

The ZigBee protocol is designed to communicate data through hostile RF environments that are common in commercial and industrial applications.
ZigBee protocol features include:

  • Support for multiple network topologies such as point-to-point,
    point-to-multipoint and mesh networks
  • Low duty cycle – provides long battery life
  • Low latency
  • Direct Sequence Spread Spectrum (DSSS)
  • Up to 65,000 nodes per network
  • 128-bit AES encryption for secure data connections
  • Collision avoidance, retries and acknowledgements.


Mesh Networks

A key component of the ZigBee protocol is the ability to support mesh networking. In a mesh network, nodes are interconnected with other nodes so that multiple pathways connect each node. Connections between nodes are dynamically updated and optimized through sophisticated, built-in mesh routing table.
Mesh networks are decentralized in nature; each node is capable of self-discovery on the network. Also, as nodes leave the network, the mesh topology allows the nodes to reconfigure routing paths based on the new network structure. The characteristics of mesh topology and ad-hoc routing provide greater stability in changing conditions or failure at single nodes.

ZigBee Applications

ZigBee enables broad-based deployment of wireless networks with low-cost, low-power solutions. It provides the ability to run for years on inexpensive batteries for a host of monitoring and control applications. Smart energy/smart grid, AMR (Automatic Meter Reading), lighting controls, building automation systems, tank monitoring, HVAC control, medical devices and fleet applications are just some of the many spaces where ZigBee technology is making significant advancements.
for more info-  http://www.digi.com/technology/rf-articles/wireless-zigbee