Sunday 25 January 2015

ARM ,processor of new era

ARM processor
The ARM processor is a 32-bit RISC processor, meaning it is built using the reduced instruction set computer (RISC) instruction set architecture (ISA). ARM processors are microprocessors and are widely used in many of the mobile phones sold each year, as many as 98% of mobile phones. They are also used in personal digital assistants (PDA), digital media and music layers, hand-held gaming systems,calculators, and even computer hard drives.
The first ARM processor-based computer was the Acorn Archimedes, released in 1987. Apple Computer became involved with helping to improve the ARM technology in the late 1980s, with their work resulting in the ARM6 technology in 1992. Later, Acorn used the ARM6-based ARM 610 processor in their Risc PC computers in 1994. Today, the ARM architecture is licensed for use by many companies, including Apple, Cirrus Logic, Intel, LG, Microsoft, NEC, Nintendo, Nvidia, Sony, Samsung, Sharp, Texas Instruments, Yamaha, and many more. The latest developed ARM processor families include ARM11 and Cortex. ARM processors capable of 64-bit processing are currently in development.

ARM Processor Architecture
ARM architecture forms the basis for every ARM processor. Over time, the ARM architecture has evolved to include architectural features to meet the growing demand for new functionality, high performance and the needs of new and emerging markets. There are currently two ARMv8 profiles, the ARMv8-A architecture profile for high performance markets such as mobile and enterpise, and the ARMv8-R architecture profile for embedded applications in automotive and industrial control.
The ARM architecture supports implementations across a wide range of performance points, establishing it as the leading architecture in many market segments. The ARM architecture supports a very broad range of performance points leading to very small implementations of ARM processors, and very efficient implementations of advanced designs using state of the art micro-architecture techniques. Implementation size, performance, and low power consumption are key attributes of the ARM architecture.
ARM developed architecture extensions to provide support for Java acceleration (Jazelle®), security (TrustZone®), SIMD, and Advanced SIMD (NEON™) technologies. The ARMv8-architecture adds a Cryptographic extension as an optional feature.
The ARM architecture is similar to a Reduced Instruction Set Computer (RISC) architecture, as it incorporates these typical RISC architecture features:
A uniform register file load/store architecture, where data processing operates only on register contents, not directly on memory contents.
Simple addressing modes, with all load/store addresses determined from register contents and instruction fields only.
Enhancements to a basic RISC architecture enable ARM processors to achieve a good balance of high performance, small code size, low power consumption and small silicon area.
References: